7.4

Extra Practice

In Exercises 1–3, find the sum or difference.

1.
$$\frac{x}{25x^2} - \frac{5}{25x^2}$$
 2. $\frac{2x^2}{x+6} + \frac{8x}{x+6}$ **3.** $\frac{3x}{x-4} - \frac{12}{x-4}$

In Exercises 4–7, find the least common multiple of the expressions.

4. $36x^2$, $9x^2 - 18x$ **5.** $x^2 - 100$, x - 10**6.** $25x^2 - 4$, $3x^2 - 10x - 8$ **7.** $x^2 + 7x - 18$, x + 9

In Exercises 8–11, find the sum or difference.

8.
$$\frac{7}{x-5} + \frac{4x}{x+1}$$

9. $\frac{7}{x^2-5x-24} + \frac{3}{x-8}$
10. $\frac{x^2-3}{x^2-6x-16} - \frac{x+5}{x+2}$
11. $\frac{x-2}{x-3} + \frac{3}{x} + \frac{6x}{2x+1}$

12. Describe and correct the error in finding the sum.

$$X \quad \frac{4}{7x} + \frac{5}{x^3} = \frac{4(x^3)}{7x(x^3)} + \frac{5(7x)}{x^3(7x)} = \frac{4x^3 + 35x}{7x^4}$$

In Exercises 13 and 14, tell whether the statement is *always*, *sometimes*, or *never* true. Explain.

- **13.** The LCD of two rational functions is one of the denominators when the other denominator is a factor.
- **14.** The LCD of two rational functions will have a degree equal to that of the denominator with the higher degree.

In Exercises 15–18, rewrite the function g in the form $g(x) = \frac{a}{x - h} + k$.

Graph the function. Describe the graph of *g* as a transformation of the graph of $f(x) = \frac{a}{d}$.

15.
$$g(x) = \frac{5x+3}{x+4}$$
 16. $g(x) = \frac{9x}{x+12}$

17.
$$g(x) = \frac{5x-4}{x}$$
 18. $g(x) = \frac{8x+13}{x-6}$